State-dependent population coding in primary auditory cortex.
نویسندگان
چکیده
Sensory function is mediated by interactions between external stimuli and intrinsic cortical dynamics that are evident in the modulation of evoked responses by cortical state. A number of recent studies across different modalities have demonstrated that the patterns of activity in neuronal populations can vary strongly between synchronized and desynchronized cortical states, i.e., in the presence or absence of intrinsically generated up and down states. Here we investigated the impact of cortical state on the population coding of tones and speech in the primary auditory cortex (A1) of gerbils, and found that responses were qualitatively different in synchronized and desynchronized cortical states. Activity in synchronized A1 was only weakly modulated by sensory input, and the spike patterns evoked by tones and speech were unreliable and constrained to a small range of patterns. In contrast, responses to tones and speech in desynchronized A1 were temporally precise and reliable across trials, and different speech tokens evoked diverse spike patterns with extremely weak noise correlations, allowing responses to be decoded with nearly perfect accuracy. Restricting the analysis of synchronized A1 to activity within up states yielded similar results, suggesting that up states are not equivalent to brief periods of desynchronization. These findings demonstrate that the representational capacity of A1 depends strongly on cortical state, and suggest that cortical state should be considered as an explicit variable in all studies of sensory processing.
منابع مشابه
Achievable Secrecy Rate Regions of State Dependent Causal Cognitive Interference Channel
In this paper, the secrecy problem in the state dependent causal cognitive interference channel is studied. The channel state is non-causally known at the cognitive encoder. The message of the cognitive encoder must be kept secret from the primary receiver. We use a coding scheme which is a combination of compress-and-forward strategy with Marton coding, Gel’fand-Pinsker coding and Wyner’s wire...
متن کاملSingle neuron and population coding of natural sounds in auditory cortex.
The auditory system drives behavior using information extracted from sounds. Early in the auditory hierarchy, circuits are highly specialized for detecting basic sound features. However, already at the level of the auditory cortex the functional organization of the circuits and the underlying coding principles become different. Here, we review some recent progress in our understanding of single...
متن کاملPopulation responses in primary auditory cortex simultaneously represent the temporal envelope and periodicity features in natural speech.
Speech perception relies on a listener's ability to simultaneously resolve multiple temporal features in the speech signal. Little is known regarding neural mechanisms that enable the simultaneous coding of concurrent temporal features in speech. Here we show that two categories of temporal features in speech, the low-frequency speech envelope and periodicity cues, are processed by distinct neu...
متن کاملColumnar and layer-specific representation of spatial sensitivity in mouse primary auditory cortex.
The primary auditory cortex (AI) is implicated in coding sound location, as revealed by behavior-lesion experiments, but our knowledge about the functional organization and laminar specificity of neural spatial sensitivity is still very limited. Using single-unit recordings in mouse AI, we show that (i) an inverse relationship between onset latency and spike count is consistently observed when ...
متن کاملThe posterior field P of cat auditory cortex: coding of envelope transients.
The posterior field (P) of the cat auditory cortex contains a very high proportion of neurons whose responses change non-monotonically with the sound pressure level (SPL) of tonal stimuli, leading to circumscribed frequency-SPL response areas, and it has therefore been suggested that field P may be specialized for processing of sound intensity. We demonstrate here a great diversity of response ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 35 5 شماره
صفحات -
تاریخ انتشار 2015